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I. Counting Hopf-Galois Structures

Definition

Let L/K be a finite extension of fields. A Hopf-Galois structure on L/K
consists of a K-Hopf algebra H acting on L and making it into an
H-Galois extension of K in the sense of Chase and Sweedler (1969), i.e.

(i) h · (st) =
∑

(h)(h(1) · s)(h(2) · t) for all h ∈ H and s, t ∈ L, where we
write the comultiplication on H as h 7→

∑
(h) h(1) ⊗ h(2);

(ii) h · 1 = ε(h)1 for all h ∈ H, where ε : H → K is the counit of H;

(iii) the K-linear map θ : A⊗K H → EndK (A), given by
θ(a⊗ h)(b) = a(h · b), is bijective.

Example

If L/K is a Galois extension and Γ = Gal(L/K ), then the group algebra
H = K [Γ], with its natural action on L. gives a Hopf-Galois structure on
L/K. This is the classical Hopf-Galois structure.
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Hopf-Galois extensions were introduced to study inseparable field
extensions, and they arise in algebraic geometry as the algebras
representing principal homogenous spaces over a finite group scheme.

We will be concerned with extensions L/K which are already Galois
extensions.
In that case, we have

Theorem (Greither & Pareigis, 1987)

Let L/K be a Galois extension of fields, and let Γ = Gal(L/K ). Then the
Hopf-Galois structures on L/K correspond bijectively to regular subgroups
G of Perm(Γ) which are normalised by the group λ(Γ) of left translations
by Γ.

We say G ⊂ Perm(Γ) is regular if any two (and hence all three) of the
following hold:

G acts transitively on Γ;

the stabiliser of some (any) element of Γ is {eG};
|G | = |Γ|.
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The Hopf algebra corresponding to G is H = L[G ]Γ, the fixed points under
Γ acting both on L (as field automorphisms) and on G (as conjugation by
left translations).

The type of the Hopf-Galois structure is the isomorphism class of G .

Example

If Γ ∼= C2 × C2 then L/K has one Hopf-Galois structure of type C2 × C2

(the classical one) and 3 of type C4.

Changing notation, we start with (abstract) finite groups Γ, G .

Definition

e(Γ,G ) is the number of Hopf-Galois structures of type G on a Galois
extension with Galois group ∼= Γ.

So e(Γ,G ) is just the number of regular subgroups in Perm(Γ) which are
isomorphic to G and normalised by λ(Γ).
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We can avoid calculating in the large group Perm(Γ) by looking at regular
embeddings instead of regular subgroups.

A regular embedding α : G ↪→ Perm(Γ) gives rise to a bijection

α̂ : G → Γ, α̂(g) = α(g) · eΓ

and hence an isomorphism Perm(Γ)→ Perm(G ). Then the inclusion
λ(Γ)→ Perm(Γ) translates to a regular embedding β : Γ→ Perm(G ).

We can reverse this process, so we get a bijection between regular
embeddings α : G ↪→ Perm(Γ) and regular embeddings β : Γ→ Perm(G ).

α(G ) is normalised by λ(Γ) ⇔ λ(Γ) ⊂ NormPerm(Γ)(α(G ))

⇔ β(Γ) ⊂ NormPerm(G)(G ) = G

⇔ β(Γ) ⊂ G oAut(G ) =: Hol(G ).

Hol(G ) is the holomorph of G .
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The regular subgroups in Perm(Γ) isomorphic to G are the Aut(G )-orbits
of regular embeddings α : G → Perm(Γ).

Thus

e(Γ,G ) = #{Aut(G )-orbits of regular embeddings α : G → Perm(Γ)

with α(G ) normalised by λ(Γ)}

=
#{regular embeddings β : Γ→ Hol(G )}

|Aut(G )|

=
|Aut(G )|
|Aut(Γ)|

#{regular subgroups in Hol(G ) isomorphic to Γ}.

So, to count the Hopf-Galois structures of type G on a field extension with
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II. Counting Skew Braces

Definition

A (left) skew brace (B,+, ∗) is a set B with binary operations +, ∗ such
that

(B,+) is a group (the additive group of B);

(B, ∗) is a group (the multiplicative group of B);

a ∗ (b + c) = a ∗ b − a + a ∗ c ∀a, b, c ∈ B.

(B,+, ∗) is a brace if (B,+) is abelian.

Braces were introduced by Rump (2007) to study non-degenerate
involutive set-theoretical solutions of the Yang-Baxter Equation (YBE).
They were generalised to skew braces by Guarnieri & Vendramin (2017).
Skew braces give non-involutive solutions to YBE.
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If (B,+, ∗) is a skew brace, then we have a group homomorphism

λ : (B, ∗)→ Aut(B,+), b 7→ λb with λb(a) = b ∗ a− a.

Thus (B, ∗) acts on (B,+).

We also have a bijection i : (B, ∗)→ (B,+) induced by the identity map
on B. This satisfies the 1-cocycle identity

i(bc) = i(b) + λb(i(c)).

Now Hol(B,+) = (B,+) oAut(B,+), and

(i , λ) : (B, ∗)→ (B,+) oAut(B,+)

is a homomorphism. Indeed, it is a regular embedding.
Conversely, given groups M, A, we can decompose a regular embedding
M → Hol(A) into a homomorphism M → Aut(A) and a bijective cocycle
M → A with respect to the corresponding action of M on A.
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Thus, given finite groups M, A of the same order, regular embeddings
M → Hol(A) give rise to left skew braces, and conversely. Composing the
embedding with an element of Aut(M) or of Aut(A) will not change the
isomorphism type of the skew brace.

Definition

Let b(M,A) be the number of left skew braces (up to isomorphism of skew
braces) with multiplicative group isomorphic to M and additive group
isomorphic to A.

Then b(M,A) is the number of (Aut(M)×Aut(A))-orbits of regular
embeddings M → Hol(A).

Summmary so far:
The two problems are closely related (but not equivalent):

(a) finding the number e(Γ,G ) of Hopf-Galois structures of type G on
Galois extension of fields s with Galois group Γ, and

(b) finding the number b(Γ,G ) of left skew braces (up to isomorphism)
with multiplicative group Γ and additive group G .
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e(Γ,G ) = #{Aut(Γ)-orbits of regular embeddings Γ→ Hol(G )}

=
|Aut(G )|
|Aut(Γ)|

#{regular subgroups in Hol(G ) isomorphic to Γ},

while

b(Γ,G ) = #{Aut(Γ)×Aut(G )-orbits of regular

embeddings Γ→ Hol(G )}
= #{Aut(G )-orbits of regular subgroups in Hol(G )

isomorphic to Γ}.

Each of the groups Aut(Γ) and Aut(G ) acts freely on the set of regular
embeddings (so all orbits have the same size), but Aut(Γ)×Aut(G ) does
not act freely, and its orbits may have different sizes.

Thus there is no simple formula relating e(Γ,G ) and b(Γ,G ).
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III. Groups of squarefree order

Let n be squarefree. If G is a group of order n, then all Sylow subgroups
of G are cyclic, so G is metabelian.

In fact

G ∼= G (d , e, k) = 〈σ, τ : σe = 1 = τd , τστ−1 = τk〉,

where de = n and orde(k) = d .

We have G (d , e, k) ∼= G (d ′, e ′, k ′) if and only if

d = d ′,

e = e ′, and

k , k ′ generate the same cyclic subgroup of order d in Z×e .

Let
z = gcd(e, k − 1), g = e/z .

Then the centre of G is cyclic of order z , and the commutator subgroup of
G is cyclic of order g .
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The primes p dividing n are of 3 kinds:

p | z , i.e. p is “central”;
p | g , i.e. p is “acted on”;
p | d , i.e. p “acts”.

Finer invariants of G are rq = ordq(k) for each prime q | e.Then

rq = 1⇔ q | z , rq | gcd(d , q − 1), lcmq|e{rq} = d .

In general, d , g , z and the rq do not determine G up to isomorphism.

Example

n = 2 · 3 · 7 · 13, d = 6, e = 91.
Here G1

∼= G2, but no two of G2, G3, G4, G5 are isomorphic.

k k mod 7 k mod 13 r7 r13 g z

G1 3 3 3 6 3 91 1

G2 61 5 9 6 3 91 1

G3 10 3 10 6 3 91 1

G4 51 2 12 3 2 91 1

G5 36 1 10 1 6 13 7
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Aut(G ) is generated by θ where

θ(σ) = σ, θ(τ) = σzτ,

and by φs for s ∈ Z×e , where

φs(σ) = σs , φs(τ) = τ,

Thus
Aut(G ) ∼= Zg o Z×e , |Aut(G )| = gϕ(e).

Write elements of Hol(G ) = G oAut(G ) as [x , α] with x ∈ G and
α ∈ Aut(G ). The multiplication in Hol(G ), and the action of Hol(G ) on
G , are given by

[xα][y , β] = [xα(y), αβ], [x , α] · y = xα(y).

Any element of Hol(G ) can be written [σaτb, θcφs ] for suitable a, b, c , s.
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IV. Braces and Hopf-Galois Structures of Squarefree Order
Let n be squarefree, and consider two groups of order n:

G := G (d , e, k), Γ := G (δ, ε, κ).

Let z = gcd(e, k − 1), g = e/z and ζ = gcd(ε, κ− 1), γ = ε/ζ.

Also, let
w = ϕ(gcd(d , δ)).

The result for skew braces is

Theorem 1 (Alabdali + B.)

b(Γ,G ) =

{
2ω(g)w if γ | e,
0 if γ - e;

where ω(g) is the number of (distinct) primes dividing g.

The result for Hopf-Galois structures depends in a more complicated way
on interplay of the structures of G and Γ.
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We can replace κ by any element of

K = {κr : r ∈ Z×δ }
without changing the isomorphism type of Γ.

The group
∆ := {m ∈ Z×δ : m ≡ 1 (mod gcd(d , δ))}

acts freely K with w = ϕ(gcd(d , δ)) orbits.

Let κ1, . . . , κw be a system of orbit representatives.

Recall rq = ordq(k) for primes q | e. Similarly, let ρq = ordq(κ) for q | ε.
Then let

S = {primes q | gcd(g , γ) : ρq = rq > 2},
T = {primes q | gcd(g , γ) : ρq = rq = 2}.

For 1 ≤ h ≤ w , let

S+
h = {q ∈ S : k ≡ κh (mod q)},

S−h = {q ∈ S : k ≡ κ−1
h (mod q)},

Sh = S+
h ∪ S−h .
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Theorem 2 (Alabdali + B.)

e(Γ,G ) =


2ω(g)ϕ(d)γ

w

∏
q∈T

1

q

 w∑
h=1

∏
q∈Sh

q + 1

q
if γ | e,

0 if γ - e.

Remark

Although Theorem 1 is simpler to state than Theorem 2, I do not know
how to prove Theorem 1 without proving Theorem 2 first.
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Sketch of proofs

Hol(G ) = G oAut(G ) = {[σaτb, θcφs ]}.

Inside Hol(G ), we need to find all regular subgroups isomorphic to Γ.

We choose an alternative presentation for Γ:

Γ = G (δ, ε, κ) = 〈X ,Y : X γ = 1 = Y ζδ,YXY−1‘ = Xκ〉.

We look for elements X , Y ∈ Hol(G ) satisfying these relations.

As X is in the commutator subgroup of Γ, and so of Hol(G ), it cannot
involve τ . It follows that γ | e if any such subgroups exist.

Also, X contains no φs factor: X = [σa, θc ].

We can choose Y of the form [σuτ, θvφt ] (where τ has exponent 1), at
the expense of replacing κ by some κr .

In fact, we can choose Y so YXY−1 = Xκh for exactly one
h ∈ {1, . . . ,w}, so the regular subgroups fall into w families Fh.
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Each subgroup in the family Fh contains exactly γϕ(e)w/ϕ(δ) pairs of
generators (X ,Y ) with

X = [σa, θc ], Y = [σuτ, θvφt ], YXY−1 = Xκh .

Let Nh be the set of quintuples

(t, a, c , u, v) ∈ Z×e × Ze × Zg × Ze × Zg

for which the corresponding X , Y ∈ Hol(G ) generate a regular subgroup
of Hol(G ) in Fh.

Then

e(Γ,G ) =
|Aut(G )|
|Aut(Γ)|

w∑
h=1

|Nh| ×
ϕ(δ)

γϕ(e)w
.

We need to calculate |Nh|.

Let
λ = z−1(k − 1) ∈ Z×g , µ = k−1λ ∈ Z×g .
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Then (t, a, c , u, v) ∈ Nh if and only if, for each prime q | e, the following
congruences mod q are satisfied.

Primes q t a u c v Number

q | gcd(z , γ) κh 6≡ 0 arb. q(q − 1)

q | gcd(z , ζδ) 1 0 6≡ 0 q − 1

q | gcd(g , γ), κh 6≡ 0 arb. λa arb. 2q2(q − 1)
q 6∈ Sh ∪ T κhk

−1 6≡ 0 arb. 0 arb.

q ∈ S+
h κh 6≡ 0 arb. λa arb. q(q2 − 1)

κhk
−1 ≡ 1 6≡ 0 arb. 0 0

q ∈ S−h κh 6≡ 0 arb. λa µu q(q2 − 1)
κhk

−1 ≡ κ2 6≡ 0 arb. 0 arb.

q ∈ T κh ≡ −1 6≡ 0 arb. λa µu 2q(q − 1)
κhk

−1 ≡ 1 6≡ 0 arb. 0 0

q | gcd(g , ζδ) 1 0 arb. 0 6≡ 0 2q(q − 1)
k−1 0 arb. 0 6≡ µu

Multiplying the contributions for each q, we can find |Nq| and hence
complete the proof of Theorem 2.
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To count skew braces, we need count Aut(G )-orbits of regular subgroups
of Hol(G ).

Thus, for each (t, a, c, u, v) ∈ Nh, we must weight the corresponding
regular subgroup by 1/I (t, a, c , uv), where I (t, a, c, u, v) is the index in
Aut(G ) of the stabiliser of the subgroup.

b(Γ,G ) =
ϕ(δ)

γϕ(e)w

w∑
h=1

∑
(t,a,c,u,v)∈Nh

1

I (t, a, c , u, v)
.

I (t, a, c , u, v) is a product of contributions Iq for each prime q | e, but we
need to partition these primes more finely than before.
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Primes q t a u c v Index Number

q | gcd(g , δ) 1 0 arb. 0 6≡ 0 q(q − 1) 2q(q − 1)
k−1 0 arb. 0 6≡ µu

q | gcd(z , δ) 1 0 6≡ 0 q − 1 q − 1

q | gcd(g , γ) κh 6≡ 0 arb. λa arb. q 2q2(q − 1)
q 6∈ Sh ∪ T κhk

−1 6≡ 0 arb. 0 arb.

q ∈ S+
h , t ≡ κh κh 6≡ 0 arb. λa arb. q q2(q − 1)

q ∈ S+
h , t ≡ 1 1 6≡ 0 arb. 0 0 1 q(q − 1)

q ∈ S−h , t ≡ κh κh 6≡ 0 arb. λa µu 1 q(q − 1)

q ∈ S−h , t ≡ κhk−1 κhk
−1 6≡ 0 arb. 0 arb. q q2(q − 1)

q ∈ T 1 6≡ 0 arb. 0 0 1 2q(q − 1)
−1 6≡ 0 arb. λa µa

q | gcd(z , γ) κh 6≡ 0 arb. 1 q(q − 1)

q | gcd(g , ζ) 1 0 arb. 0 6≡ 0 q 2q(q − 1)
k−1 0 arb. 0 6≡ µu

q | (z , ζ) 1 0 6≡ 0 1 q − 1
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If q ∈ S+
h then we have q2(q − 1) quintuples mod q with t ≡ κh and

q(q − 1) quintuples with t ≡ 1, but Iq is q or 1 respectively.

Similarly for S−h .

Take arbitrary subsets A ⊆ S+
h , B ⊆ S−h , and let Nh(A,B) be the number

of quintuples in Nh with

{q ∈ S+
h : t ≡ 1 (mod q)} = A; {q ∈ S−h : t ≡ κh (mod q)} = B.

Let Ih(A,B) be the index of the stabiliser of each of these subgroups. Then

b(Γ,G ) =
ϕ(δ)

γϕ(e)w

w∑
h=1

∑
A,B

Nh(A,B)

Ih(A,B)
.

The contribution of q to Nh(A,B)/Ih(A,B) is q(q − 1) for all
q ∈ S+

h ∪ S−h and is 2q(q − 1) for all other q | gcd(g , γ).

Summing over A and B restores the “missing” factor 2 so all primes
q | gcd(g , γ) give the same contribution.
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Multiplying the contributions for all q | e, and simplifying, we obtain the
simple formula

b(Γ,G ) =

{
2ω(g)w if γ | e,
0 if γ - e;

proving Theorem 1.
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Thank you for listening!
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